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Abstract— Breast cancer is responsible for causing the greatest number of cancer-related deaths among women, impacting 2.1 million 
women every year (WHO). Breast cancer is the most common form of cancer in women, with invasive ductal carcinoma (IDC) representing 
80 percent of all breast cancer diagnoses. One way to reduce the number of deaths caused by breast cancer is to perform early diagnosis 
to detect the presence of a malignant tumor before the tumor gets too harmful. While there are several methods of diagnosing and testing 
a tumor, they all have their own sets of problems: they are time-consuming, expensive, and limited in their ability to diagnose a variety of 
tumors. Accurately identifying and categorizing breast cancer subtypes is an important clinical task, and automated methods can be used 
to save time and reduce error, potentially saving many lives. This study presents a deep learning approach for automatic detection and 
visual analysis of IDC tissue regions in whole slide images of breast cancer. The approach is similar to how the human brain uses different 
interpretation levels or layers of most representative and useful features, resulting in a hierarchical learned representation. These methods 
have been shown to outpace traditional approaches of most challenging problems in several areas such as speech recognition and object 
detection. The deep learning framework used were convolutional neural networks (CNNs). The model utilizes the Keras library to create 
the convolutional neural network and a dataset from Case Western Reserve University consisting of over 270,000 images of patches of 
breast cancer specimens. The model achieved 88-90% accuracy. 

Index Terms— breast cancer, breast cancer diagnoses, invasive ductal carcinoma, idc, deep learning, machine learning, artificial 
intelligence, prediction, malignancy, convolutional neural networks. 

——————————      —————————— 

1 INTRODUCTION                                                                     
reast cancer has been a prominent issue among women; it 
has been very difficult to determine whether a breast tu-
mor is malignant or not without being invasive and to 

address the cancer before it becomes too problematic. Cancers 
can result from alterations in genes encoding cellular signaling 
molecules, especially protein kinases (My Cancer Genome 
2016). Types of gene alterations that can result in cancers in-
clude: single nucleotide variants (point mutations), small du-
plications of consecutive nucleotides, insertions or deletions 
involving one or a few nucleotides, changes in exon or gene 
copy numbers, and structural variants in genetic material in-
cluding translocations and inversions (My Cancer Genome 
2016).  

 
Invasive ductal carcinoma is the most common type of 

breast cancer. About 80% of all breast cancers are invasive 
ductal carcinomas. According to the American Cancer Society, 
more than 180,000 women in the United States find out they 
have invasive breast cancer each year. Most of them are diag-
nosed with invasive ductal carcinoma. 
 

Current methods of tumor testing are capable of identify-
ing mutations in tumor DNA. However, these methods gener-
ally come with a set of drawbacks. Almost all current methods 
of tumor testing can only detect a specific mutation; other mu-
tations that may be present in tumor DNA cannot be detected 
(My Cancer Genome 2016). Such methods are limited in the 
types or number of mutations that can be detected in tumor 
DNA. They can also be labor intensive and/or expensive, of-
ten involving the use of highly sophisticated technology. 
Completion of diagnosis can take anywhere from 2-3 days to 

several weeks, and such tests also have a possibility of false 
negatives and false positives (My Cancer Genome 2016). 

 
Early diagnosis of breast tumors can help doctors to pro-

vide a mostly accurate assessment of a breast tumor to their 
patients. The most common method of diagnosing breast tu-
mors is mammography, which is an x-ray imaging method 
used to examine a breast for early detection of breast cancer 
(NIBIB 2015). A radiologist examines a mammogram to identi-
fy any potential abnormalities in the breast. Mammography 
has been shown to reduce breast cancer mortality by about 
20% in high-resource settings (WHO 2018). However, a 
mammogram is examined only by a radiologist. If it is not 
clear that the tumor is malignant or benign, there is a chance 
that the radiologist could give an inaccurate result. In one 
study, 100 mammograms were submitted to nine radiologists. 
The diagnosis or suspicion of cancer varied from 10-55% (De-
vitt 2016). The denser the breast, the more difficult it is to pro-
duce an image, so it will be harder to diagnose (NIBIB 2015). 
 

Machine learning algorithms such as decision trees, lo-
gistic regression, and support vector machines have been 
common choices for creating models that can be used to classi-
fy the malignancy of breast tumors. Previous studies have 
shown that they can demonstrate over 90% accuracy in cancer 
diagnosis, much more than today’s standard of 80% accuracy. 
However, the data that these algorithms use are collected by 
humans. Humans choose, for example, the boundaries of a 
feature in a tumor; they could be missing many pixels or be 
including extra pixels for each feature, meaning that the data 
itself may not be accurate. While these algorithms do generally 
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yield high accuracy, they do not take into account the bias 
from human error. With this important source of bias, the va-
lidity of such models are questionable. 
 

The recent increase in available computing power and da-
taset size, along with the ability to examine images directly, 
has made convolutional neural networks (CNNs) popular for 
image classification problems. Contrary to the traditional ap-
proach of hand-crafted feature extraction methods, CNNs 
learn useful features directly from the training image patches 
by the optimization of the classification loss function. These 
deep learning models have achieved excellent performance in 
image classification challenges in different fields, including 
medical image analysis. CNNs reduce the field-knowledge 
needed to design a classification system. Because of this, the 
performance of the model is less biased by the dataset used 
and similar network architectures can achieve good results on 
different problems. 

 

2 METHODS 
 

2.1 Dataset 
The original dataset from Case Western University con-

sists of 162 whole mount slide images of Breast Cancer (BCa) 
specimens scanned at 40x. From that, 277,524 patches of size 
50 x 50 were extracted (198,738 IDC negative and 78,786 IDC 
positive). Each patch’s file name is of the format: 
u_xX_yY_classC.png, where u is the patient ID, X is the x-
coordinate of where this patch was cropped from, Y is the y-
coordinate of where this patch was cropped from, and C indi-
cates the class, where 0 is non-IDC and 1 is IDC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: One sample each of a non-IDC tumor and an IDC 

tumor from the dataset. 
 
 

2.2 Data Preparation 
The dataset of images was split into training and testing 

sets. The training set consisted of 90% of the dataset while the 
testing set comprised 10% of the dataset. Classes were re-
trieved from the file name. In order to eliminate the bias of one 
class over the other, the training set was normalized so that 
half of the images in the training set were IDC+ and the other 
half were IDC-. 

 

2.3 CNN Architecture 
CNNs are comprised of three types of layers: convolu-

tional layers, pooling layers and fully-connected layers. When 
these layers are stacked, a CNN architecture has been formed. 
The input layer of the CNN will hold the pixel values of the 
inputted image. The convolutional layer will determine the 
output of neurons of which are connected to local regions of 
the input through the calculation of the scalar product be-
tween their weights and the region connected to the input 
volume. The rectified linear unit (ReLu) applies an activation 
function such as the sigmoid function to the output of the acti-
vation produced by the previous layer; this keeps the value of 
the neurons between 0 and 1. The pooling layer will then 
simply perform downsampling along the spatial dimensionali-
ty of the given input, further reducing the number of parame-
ters within that activation. The fully-connected layers will then 
perform the same duties found in standard neural networks 
and attempt to produce class scores from the activations to be 
used for classification of the input. ReLu may be used between 
these layers to improve performance. 

 

2.4 Convolutional Layers 
Convolutional layers focus on the use of filters (also re-

ferred to as kernels). Filters are convolved with the image. The 
region that the filter is applied over is called the receptive 
field. The filters are arrays of numbers called weights. When 
convolving the filters with the image, the pixel values of the 
image are multiplied by the weights of the filter and then add-
ed together to produce a scalar number called the weighted 
sum, which is stored in an activation map. The scalar number 
produced is in the position of the activation map that corre-
sponds with receptive field. 

 
 
 
 
 
 
 
 
 

Figure 2: A visual representation of a convolutional layer. 
The center element of the kernel is placed over the input vec-
tor, of which is then calculated and replaced with a weighted 

sum of itself and any nearby pixels. 
 
Convolutional layers are also able to significantly reduce 

the complexity of the model through the optimisation of its 
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output. These are optimised through three hyperparameters: 
the depth, the stride, and zero-padding. The depth of the out-
put volume produced by the convolutional layers can be 
manually set through the number of neurons within the layer 
to a the same region of the input. Reducing this hyperparame-
ter can significantly minimise the total number of neurons of 
the network, but it can also significantly reduce the pattern 
recognition capabilities of the model. The stride can be defined 
in which the depth is set around the spatial dimensionality of 
the input in order to place the receptive field. For example, if 
we were to set a stride as 1, then we would have a heavily 
overlapped receptive field producing extremely large activa-
tions. Alternatively, setting the stride to a greater number will 
reduce the amount of overlapping and produce an output of 
lower spatial dimensions. Zero-padding is the simple process 
of padding the border of the input and is an effective method 
to give further control as to the dimensionality of the output 
volumes. It is important to understand that through using 
these techniques, we will alter the spatial dimensionality of 
the convolutional layers output. To calculate this, you can 
make use of the following formula: 

 
 
 

V represents the input volume size (height×width×depth), R 
represents the receptive field size, Z is the amount of zero 
padding set, and S referring to the stride. If the calculated re-
sult from this equation is not equal to a whole integer then the 
stride has been incorrectly set, as the neurons will be unable to 
fit neatly across the given input. 

 

2.5 Pooling Layers 
Pooling layers aim to gradually reduce the dimensionality 

of the representation, and thus further reduce the number of 
parameters and the computational complexity of the model. 
Pooling layer operates on each activation map independently. 
The most common approach used in pooling is max pooling. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Example of max pooling with 2x2 filters and a 
stride of 2 

 

2.6 Fully-connected Layers 
Fully-connected layers take an input volume (whatever the 

output is of the convolutional layer or ReLu or pooling layer 
preceding it) and outputs an N dimensional vector where N is 
the number of classes that the program has to choose from. In 

the case of classifying IDC, N = 2 since either a tumor shows 
positive or negative for IDC. Each number in this N dimen-
sional vector represents the probability of a certain class. The 
fully-connected layer looks at the output of the previous layer 
(which should represent the activation maps of high-level fea-
tures) and determines which features correlate the most to a 
particular class. This correlation is determined using particular 
weights so that when computing the product of the weights 
and the values in the neurons of the previous layer, the correct 
probabilities for the different classes are calculated. These 
probabilities can be used to classify the image: whichever class 
has the highest probability would be the returned classifica-
tion of the CNN. 

 

2.7 Backpropagation 
The computer is able to adjust its filter values (or weights) 

is through a training process called backpropagation. Before 
the CNN starts, the weights or filter values are randomized. 
The filters don’t know to look for edges and curves. Back-
propagation can be separated into 4 distinct sections: the for-
ward pass, the loss function, the backward pass, and the 
weight update. During the forward pass, you take a training 
image and pass it through the whole network. At first, the 
neural network, with its current weights, isn’t able to look for 
low level features and therefore cannot make any reasonable 
conclusions about what the classification is. This goes to the 
loss function part of backpropagation. While there are many 
different functions used to calculate loss, all of them convey 
how often the neural network is wrong in its classification. 
The formula used for the loss function will be explained later 
on. It is expected that the loss will be extremely high for the 
first couple of training images because of the lack of inputted 
observations. The goal is to get to a point where the predicted 
label from the CNN is the same as the training label. To ac-
complish this, loss has to be minimized. Visualizing this as just 
an optimization problem in calculus, we want to find out 
which inputs (weights in our case) most directly contributed 
to the loss (or error) of the network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Illustration of minimizing the loss function. Gra-

dient function is used to eventually reach the global cost min-
imum; this is the point at which loss is minimized. 

 
This is the mathematical equivalent of a dL/dW (derivative 

of L(W)) where W are the weights at a particular layer and L is 

(𝑉𝑉 − 𝑅𝑅)  +  2𝑍𝑍
𝑆𝑆 + 1
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the loss at each of those weights. Once loss is calculated, the 
neural network will perform a backward pass through the 
network in which it determines which weights contributed the 
most to the loss and find ways to adjust them so that the loss 
decreases. Once this derivative is computed, the neural net-
work will update the weights. This is where the weights of the 
filters are updated so that they change in the opposite direc-
tion of the gradient. The process of forward pass, loss func-
tion, backward pass, and parameter update is one training 
iteration called an epoch. The program will repeat this process 
for a fixed number of iterations for a training set of images. By 
inputting many training images and repeating the process of 
backpropagation, the CNN should be trained well enough so 
that the weights of the layers are tuned correctly. 

 

2.8 Loss Function 
Cross-entropy loss, or log loss, measures the performance 

of a classification model whose output is a probability value 
between 0 and 1. Cross-entropy loss increases as the predicted 
probability diverges from the actual label. A perfect model 
would have a log loss of 0. As the predicted probability ap-
proaches 1, log loss slowly decreases. As the predicted proba-
bility decreases, however, the log loss increases rapidly. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5: Example of a cross entropy (log loss) graph. 
 
Log loss penalizes both types of errors, but especially the 

predictions that are confident and wrong. In binary classifica-
tion, cross-entropy can be calculated using the formula 

 
(ylog(p) + (1-y)log(1-p)), 

 
where y is the actual class label of the observation and p is 

the predicted class label of the same observation. 
 

2.9 Dropout 
Dropout is a neural network regularization technique in 

which randomly selected neurons are ignored during training 
and are not used when evaluating the model. When the neu-
rons are randomly dropped out of the network during the 
training, the other neurons will have to step in and handle the 
representation required to make a prediction for the missing 
neurons. The effect is that the network becomes less sensitive 

to the specific weights of neurons，resulting in a network that 
is capable of better generalization and is less likely to overfit 
the training data. Dropout is implemented by randomly select-
ing neurons to be dropped-out with a given probability (e.g. 
20%) each weight update cycle. The dropout technique can be 
implemented on a visible input layer or hidden layer.  
 

2.10 Activation Functions 

2.10.1 Signmoid 
The sigmoid function takes any real number and returns a 
standardized value that falls between 0 and 1. It’s often used 
in logistic regression for a binary classification and also as ac-
tivation function in neural networks. The output of the func-
tion returns the probability of an event occurring based on the 
sigmoid distribution. The sigmoid function is the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Graph of sigmoid function. 
 

2.10.2 Softmax 
The softmax function is a generalization of the sigmoid func-

tion used to handle multi-class classification. Softmax provides 
the probability of each class occurring. The output with highest 
probability is the predicted classification value. The sum of re-
turned values of the softmax function is always equal to 1. It is 
proven that sigmoid is a particular case of softmax with i=2. The 
softmax function is often used in deep learning when working with 
neural networks and can be used to classify images. The equation 
use in softmax is: 
 
 
 

2.10.3 ReLu (Rectified Linear Unit) 
ReLu is the most commonly used activation function in deep 

learning algorithms. ReLu is half rectified from the bottom. f(x) is 
zero when x is less than zero and f(x) is equal to x when x is 
greater than or equal to zero. 

 
 
 

𝑃𝑃(𝑥𝑥)  =  
1

1 + 𝑒𝑒−𝑥𝑥  

𝑆𝑆(𝑦𝑦𝑖𝑖)  =  
𝑒𝑒𝑦𝑦𝑖𝑖

∑𝑛𝑛𝑗𝑗=1 𝑒𝑒𝑦𝑦𝑗𝑗
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Figure 7: Graph and function of ReLu activation function 
 

2.11 Confusion Matrix 
A confusion matrix is a technique for summarizing the 

performance of a classification algorithm. Classification accu-
racy alone can be misleading if there is an unequal number of 
observations in each class or if there are more than two classes 
in the dataset. Calculating a confusion matrix can provide a 
better idea of what the classification model is getting right and 
what types of errors it is making. The confusion matrix shows 
the ways in which the classification model is confused when it 
makes predictions. The number of correct and incorrect pre-
dictions are summarized with count values and broken down 
by each class. 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 8: Confusion matrix table illustrating different 
types of values. 

 
The confusion matrix provides the number of data points 

that fit each of the following four categories: 
 
• “True positive” for correctly predicted event values. 
• “False positive” for incorrectly predicted event values. 
• “True negative” for correctly predicted no-event val-

ues. 
• “False negative” for incorrectly predicted no-event 

values. 
 
False positive values illustrate a Type I error while false 

negative values illustrate a Type II error. These four values 

can help in calculating more advanced classification metrics: 
 

Accuracy: Overall, how often is the model correct? 
(TP+TN)/Total 
 
Misclassification/Error Rate: Overall, how often is the model 
wrong? 
(FP+FN)/Total 
 
True Positive Rate (Sensitivity/Recall): When the result is actual-
ly positive, how often does the model correctly predict posi-
tive? 
TP/(TP+FN) 
 
False Positive Rate: When the result is actually negative, how 
often does the model incorrectly predict positive? 
FP/(TN+FP) 
 
True Negative Rate (Specificity): When the result is actually neg-
ative, how often does the model correctly predict negative? 
TN/(TN+FP) 
 
False Negative Rate: When the result is actually positive, how 
often does the model incorrectly predict negative? 
FN/(TP+FN) 
 
Precision: When the model predicts positive, how often is it 
correct? 
TP/(TP+FP) 

 
Prevalence: How often does the positive condition actually oc-
cur in our sample? 
(FN+TP)/Total 
 

3 RESULTS 

3.1 Implementation of CNN Architecture 
The Sequential CNN architecture used is shown through the 
following code and steps: 

 
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 

input_shape=input_shape, strides=e)) 

model.add(Conv2D(64, (3, 3), activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(num_classes, activation='softmax')) 
 
1. The first hidden layer is a convolutional layer called a 

Conv2D. This layer has 32 features maps with 3x3 kernels 
and a ReLu activation function. Input image is 50-pixel x 
50-pixel x 3 in shape. Strides window is 2. 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019                                                                                                    1793 
ISSN 2229-5518  
 

IJSER © 2019 
http://www.ijser.org  

2. The 2nd hidden layer is convolution layer called a 
Conv2D. This layer has 64 feature maps with size of 3 x 3 
and ReLu activation function. 
 

3. The 3rd hidden layer is a pooling layer that takes the max-
imum value called MaxPooling2D. It is configured with a 
pool size of 2 x2. 
 

4. The 4th hidden layer is a regularization layer using drop-
out called Dropout. It is configured to randomly drop 25% 
of neurons in the layer in order to reduce overfitting. 
 

5. The 5th hidden layer is Flatten. This layer converts the 2D 
matrix data to a vector and allows the output to be pro-
cessed by standard fully connected layers. 
 

6. The 6th hidden layer is a fully-connected layer with 128 
neurons and the ReLu activation function is used. 
 

7. The 7th hidden layer is a Dropout regularization layer. It 
is configured to randomly drop 50% of neurons in the lay-
er in order to reduce overfitting. 
 

8. Finally, the output layer has two neurons for the 2 classes 
and the softmax activation function to output the predic-
tion with probability for each class. 

 
 
 
 
 
 
 

Figure 9: Sequential CNN architecture implemented in deep 
learning program. 

 

3.2 Training vs. Validation 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Training and validation curves representing accura-

cy over 100 epochs 
 
Training data comprised 90% of the entire dataset while 

testing data comprised the other 10%. When training the CNN 
up to 100 epochs, the model achieved its maximum accuracy 
after 88 epochs with 88.47% accuracy. When validating the 
CNN using the testing set up to 100 epochs, the model 
achieved maximum accuracy after 94 epochs with 89.56% ac-

curacy. The training and validation curves grew with each 
other for the majority of the epochs, although there were large 
discrepancies after about 48 epochs. The model seems to be 
accurate and reliable. 
 

3.2 Accuracy and Loss 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Model accuracy and model loss up to 100 epochs 
 

Model accuracy was calculated by determining the num-
ber of correct predictions divided by the total number of pre-
dictions made. The explanation on model accuracy was pro-
vided in Section 3.2. Cross-entropy loss was used for the loss 
function. In this loss function, errors are penalized severely, as 
shown after about 48 epochs. However, the general trend 
showed model loss to decrease as the number of epochs in-
creased. Testing loss dropped along with training loss, again 
indicating that the model seems to be accurate and reliable. 
 

3.2 Confusion Matrix 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 12: Resulting confusion matrix for IDC classification. 
Total = 546, TP = 232, TN = 249, FP = 24, FN = 41 
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This is the list of rates that are often computed from a con-
fusion matrix for a binary classifier: 
 
Accuracy:  
(TP+TN)/Total = (232+249)/546 = 0.88 
 
Misclassification/Error Rate:  
(FP+FN)/Total = (24+41)/546 = 0.12 
 
True Positive Rate (Sensitivity/Recall):  
TP/(TP+FN) = 232/273 = 0.85 
 
False Positive Rate:  
FP/(TN+FP) = 10/60 = 0.17 
 
True Negative Rate (Specificity):  
TN/(TN+FP) = 50/60 = 0.83 
 
False Negative Rate:  
FN/(TP+FN) = 41/273 = 0.15 
 
Precision:  
TP/(TP+FP)= 232/256 = 0.91 
 
Prevalence:  
(FN+TP)/total = 273/546 = 0.50 

 
The confusion matrix shows that the classifying model 

achieved high accuracy (88%) and precision (91%) and that it 
achieved relatively high sensitivity (85%) and specificity 
(83%). The error rate (12%) was low, and the false positive 
(17%) and false negative (15%) rates were relatively low.  

 
The confusion matrix shows that it predicted positive 232 + 

24 = 256 times and predicted negative 249 + 41 = 290 times. 
Prevalence was 50% and the number of times the model pre-
dicted positive was close to the number of times it predicted 
negative, so it is determined that the model did not show bias 
towards a specific class. 
 

4 IMPLICATIONS 
This Sequential CNN model can be used to detect invasive 

ductal carcinoma in patients. Since this is only a prediction, 
this should not be the only means of determining if a breast 
tumor is malignant or benign; however, it can give doctors a 
good sense of the severity of the tumor is harmful or not. If 
used at an early stage, the diagnosis from this model can help 
doctors take immediate action to address any possible malig-
nant tumors. As there are 2.1 million women affected by 
breast cancer every year, this technology can help thousands 
of women get early treatment. This model achieves between 
86-90% accuracy, which is better than today’s standard of 80% 
accuracy. Moreover, the breast cancer histology image is di-
rectly inputted into the model without human interference, so 

human error in the diagnosis is minimized. 
 
One possible next step is to introduce a learning rate vari-

able. Learning rate is a parameter that is chosen by the pro-
grammer. A high learning rate means that bigger steps are 
taken in the weight updates and thus, it may take less time for 
the model to converge on an optimal set of weights. However, 
a learning rate that is too high could result in jumps that are 
too large and not precise enough to reach the optimal point. If 
the right learning rate is chosen, the model will be able to effi-
ciently learn from a dataset while achieving high accuracy. 

 
It is important to note that due to the lack of computer 

processing power available, more complex CNN architectures 
could not be implemented. If there was access to powerful 
graphics processing units (GPUs), more sophisticated architec-
tures that utilized more convolutional, pooling, and fully-
connected layers could be tested, potentially achieving signifi-
cantly higher accuracy compared to the 88-90% accuracy 
achieved in this study. However, despite the lack of a power-
ful GPU, this study managed to achieve a higher accuracy 
than current methods of breast cancer diagnosis, demonstrat-
ing the potential of applications of artificial intelligence in 
healthcare for diagnosing diseases with higher accuracy at 
earlier stages. 
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